Sistema de anclaje de inyección fischer FIS EM 390 S

Indice

■ Manual Técnico

■ Productos

■ Contacto

Aplicación

Anclaje químico de invección FIS EM 390 S

Pico mezclador FIS Statick Mixer

Pistola de inyección doble émbolo FIS AK

Descripción

El cartucho fischer EIS EM 390 S es un mortero de resina epoxy que se caracteriza por sus altas cualidades de adherencia tanto en hormigón como en concreto, brindando las más altas cargas máximas a profundidades de empotramiento menores.

■ Debido a sus altas prestaciones de adherencia, cada colocación requiere menor cantidad de producto, dando como resultado un costo efectivo por fijación más bajo, garantizando un anclaje seguro y confiable.

- Adecuado para la colocación en perforaciones realizadas tanto con martillos electroneumáticos como con coronas de diamante debido a su flexibilidad de trabaiabilidad.
- Puede ser utilizado bajo agua brindando excelentes resultados.
- Debido a una mínima contracción del producto durante el fragüe, permite ser utilizado para perforaciones tanto de diámetro como de empotramiento importantes.
- Mayor tiempo de trabajabilidad inclusive en ambientes con temperaturas elevadas.
- Su fórmula exclusiva permite un almacenamiento del producto de hasta 24 meses sin que se alteren sus cualidades técnicas.

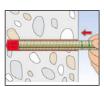
Ventajas

Tapa

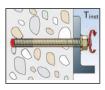
Nueva tapa con cerrado tipo "bayoneta", que facilita una rápida y fácil preparación del cartucho para su utilización.

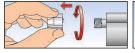
Boquilla mezcladora

La nueva boquilla mezcladora del cartucho fischer FIS EM 390 S posee una mayor longitud externa con un helicoide en su interior que facilita un llenado de la perforación más dócil, asegurando eficiencia.


Pistola de aplicación

Aplicable con la pistola doble émbolo fischer FIS AK, reduciendo el esfuerzo del gatillo al inyectar y evitando gastos en accesorios extras.


Montaje



continúa

Sistema de anclaje de inyección fischer FIS EM 390 S

■ Indice

■ Manual Técnico

■ Productos

■ Contacto

"La solución más eficiente para la colocación de hierros de construcción y barras de armado en hormigón

continúa

Cargas para el conjunto de fijacion FIS EM 390 + Hierro de Construcción

				Hor	migón no	o fisurado)		
Tamaño			Ø8	Ø10	Ø12	Ø14	Ø16	Ø20	Ø25
	$h_{01} = he_{f1}$	[mm]	65	80	95	110	125	160	190
Empotramiento	$h_{02} = he_{f2}$	[mm]	80	90	110	125	140	170	240
	$h_{03} = he_{f3}$	[mm]	95	110	120	145	170	210	285
Ø de Mecha	d _o	[mm]	12	14	16	18	20	25	30
Carga Ultima Media	(expresada	en kN)							
		$h_{01} = h_{ef1}$	26.9	41.4	59.1	79.8	103.6	140.6	186.1
Tracción U _{n,m}	00	$h_{02} = h_{ef2}$	33.2	46.6	68.4	90.7	116.0	149.4	235.1
		$h_{03} = h_{ef3}$	39.4	57.0	74.6	105.2	140.9	184.6	279.1
Carga Recomendada	ı (expresada	en kN)1							
		$h_{01} = h_{ef1}$	7.3	11.2	16.0	21.6	28.0	40.2	56.5
Tracción U _{n,m}	00	$h_{02} = h_{ef2}$	9.0	12.6	18.5	24.5	31.4	42.7	71.4
		$h_{03} = h_{ef3}$	10.6	15.4	20.1	28.4	38.1	52.7	84.7
Distancias									
Distancia axial mínima	S_{min}	[mm]	50	60	70	80	85	110	140
Distancia al borde mínima	C_{min}	[mm]	50	60	70	80	85	110	140
Espesor mínimo del	h _{min1}	[mm]	105	120	135	150	165	200	230
elemento estructura	h _{min2}	[mm]	120	130	150	165	180	210	al280
	h _{min3}	[mm]	135	150	160	185	210	250	325

¹⁾Carga expresada aplicando el correspondiente factor de seguridad sobre la Carga Ultima Media Todas las cargas están calculadas en un Hormigón H 20/25, y utilizando hierro de construcción

Cargas para el conjunto de fijación FIS EM 390 + Varillas roscadas

			Hormigón no fisurado							
Tamaño			M8	M10	M12	M16	M20	M24	M30	
	$h_{01} = h_{ef1}$	[mm]	65	80	95	125	160	190	240	
Empotramiento	$h_{02} = h_{ef2}$	[mm]	80	90	110	140	170	240	280	
	$h_{03} = h_{ef3}$	[mm]	95	110	120	170	210	285	340	
Ø de Mecha	do	[mm]	10	12	14	18	24	28	35	
Carga Ultima Medi	a (expresada en	kN)								
		$h_{01} = h_{ef1}$	19.0*	30.2*	43.8*	81.6*	127.4*	183.6*	291.7	
Tracción U _{n,m}	0 _ō	$h_{02} = h_{ef2}$	19.0*	30.2*	43.8*	81.6*	127.4*	183.6*	291.7	
	_	$h_{03} = h_{ef3}$	19.0*	30.2*	43.8*	81.6*	127.4*	183.6*	291.7	
Corte V _{u,m}	90⁰		11.4	18.1	26.3	49.0	76.4	110.1	175.0	

		$h_{01} = h_{ef1}$	5.7	8.8	12.5	21.9	35.1	50.0	78.9	
Tracción U _{n,m}	00	$h_{02} = h_{ef2}$	7.0	9.9	14.4	24.6	37.3	63.4	92.1	
		$h_{03} = h_{ef3}$	8.4	12.1	15.8	29.8	46.0	74.9	111.8	
Corte V _{u,m}	90º		5.4	9.3	12.5	23.3	36.4	52.4	83.4	

11.1

22.2

38.9

192.9

333.6

Momento flector admisible (válido para varilla roscada grado 5.8)

 M_{rec}

Distancias									
Distancia axial mínima	S _{min}	[mm]	40	45	55	65	85	105	140
Distancia al borde mínima	C _{min}	[mm]	40	45	55	65	85	105	140
Espesor mínimo del	h _{min1}	[mm]	105	120	135	165	200	230	280
elemento estructural	h _{min2}	[mm]	120	130	150	180	210	280	320
_	h _{min3}	[mm]	135	150	160	210	250	325	380
Torque de ajuste	T _{inst}	[Nm]	10	20	40	60	120	150	300

^{*)} Falla de acero decisiva

[Nm]

continúa

¹⁾ Carga expresada aplicando el correspondiente factor de seguridad sobre la Carga Ultima Media Todas las cargas están calculadas en un Hormigón H 20/25, con varillas roscadas Grado 5.8

Sistema de anclaje de inyección fischer FIS EM 390 S

■ Indice

■ Manual Técnico

■ Productos

■ Contacto

"La solución más eficiente para la colocación de hierros de construcción y barras de armado en hormigón"

continúa

	4 / 4	_			
Cara	cterística	S de	Ins	anci	ales
Julia	otti istiva	Juc	103	diloi	<u> </u>

FIS EM 390 S				Varilla roscada RGM						
			M 8	M 10	M 12	M 16	M 20	M 24	M 30	
Ø nominal de perforación	d_0	[mm]	10	12	14	18	24	28	35	
Profundidad de la perforación	h ₀	[mm]	80	90	110	125	170	210	280	
Profundidad de anclaje	h _{ef}	[mm]	80	90	110	125	170	210	280	
Llave para la tuerca	SW	[mm]	13	17	19	24	30	36	46	
Ø máx. agujero en objeto a fijar	d _f	[mm]	9	12	14	18	22	26	33	
Torque de ajuste requerido	T _{inst}	[Nm]	10	20	40	60	120	150	300	
Espesor Min. del material base	h _{min}	[mm]	120	130	150	165	210	250	320	
Distancia axial mínima	S _{min}	[mm]	40	45	55	65	85	105	140	
Distancia al borde mínima	C _{min}	[mm]	40	45	55	65	85	105	140	

Artículo	Código de producto	Descripción
FIS EM 390 S	18614	Volumen: 390 cm - 1 unidad contiene: 1 cartucho + 2 picos
FIS AK	18500	Pistola de inyección doble émbolo p/ FIS V 360 S - FIS EM 390
ABG	18501	Bomba manual de aire p/limpiar perforación
FIS Statick Mixer	18616	Pico mezclador p/ FIS EM 390 S

Tiempo de Trabajabilidad y Endurecimiento

Temperatura del Cartucho (mínimo + 5º C)	Tiempo de trabajabilidad	
entre - 5° C a + 5° C	4 h	
entre + 5°C a + 10°C	2 h	
entre + 10°C a + 20°C	30 min.	
entre + 20°C a + 30°C	14 min.	
entre + 30°C a + 40°C	7 min.	

Temperatura del material base	Tiempo de Endurecimiento
entre - 5ºC a + 5ºC	80 h
entre + 5°C a + 10°C	40 h
entre + 10°C a + 20°C	18 h
entre + 20°C a + 30°C	10 h
entre + 30°C a + 40°C	5 h

